Optimizing MoE Routers: Design, Implementation,
and Evaluation in Transformer Models

George Weale (gmw?2143 @columbia.edu)
Dan Harvey (dyh2111@columbia.edu)
Berk Yilmaz (by2385@columbia.edu)

Abstract—Mixture of Experts (MoE) architectures increase
large language model scalability, yet their performance depends
on the router module that moves tokens to specialized experts.
Bad routing can load imbalance and reduced accuracy. This
project designed and implemented different router architectures
within Transformer models to fix these limitations. We experi-
mented with six distinct router variants Linear, Attention, Multi-
Layer Perceptron (MLP), Hybrid, Hash, and our new MLP-
Hadamard. We characterized these routers using BERT and the
Qwenl.5-MoE model, looking at parameter efficiency, inference
latency, routing entropy, and expert utilization patterns. Our
evaluations showed distinct trade-offs: Linear routers offer speed,
while MLP and Attention routers provide greater expressiveness.
The MLP-Hadamard router shows a unique capability for struc-
tured, sparse routing. We successfully replaced and fine-tuned
custom routers within the complex, quantized Qwenl.5-MoE
model. This work provides a comparative analysis of MoE router
designs and offers insights into optimizing their performance for
efficient and effective large-scale model deployment.

I. INTRODUCTION
A. Background

Mixture of Experts (MoE) architectures scale large language
models without proportional increases in computational costs
during inference [1], [2]. MoE models conditionally activate a
parameter subset for each input token for each block. This
increases parameter count while maintaining computational
demands. A router component is the most important part
of these architectures. The router determines expert (sub-
network) processing for each token. Router component design
impacts MoE model efficiency and effectiveness, as the router
operates at each layer. This routing mechanism is a learned
component within the neural architecture. It performs con-
ditional computation to direct information flow through the
network based on input features.

The Mixture-of-Experts (MoE) architecture has been the
solution for scaling large language models (LLMs) efficiently.
By routing tokens to specialized expert modules, MoEs allow
models to maintain capacity while only activating a sparse
subset of parameters during inference, reducing computational
cost. However, the performance of MoEs is highly dependent
on the design of the router module, which determines how
tokens are dispatched to experts.

In this report we designed and evaluated router variants.
These variants showed differences in complexity, determin-
ism, and trainability. The report looked the following router
variants: LinearRouter, a linear projection; AttentionRouter,

a softmax-based attention mechanism; MLP Router, a multi-
layer perceptron with non-linear activations; HybridRouter,
a combination of linear and attention mechanisms; and
HadamardRouter, deterministic routing using a Hadamard
matrix, and parameter-free hash-based deterministic routing.

B. Problem Statement & Motivation

MOoE models give efficiency advantages by having access
to many expert networks while only activating a few [7].
However, their practical performance is often limited by sub-
optimal routing mechanisms, this causes poor accuracy and
increased inference latency. Most MoE implementations use
a linear projection followed by a softmax to compute routing
probabilities, which cannot capture complex relationships be-
tween token representations and expert specializations. Load
imbalance is where certain experts are over utilized while
others remain underutilized, this is a large challenge to achieve
the full efficiency potential of MoE architectures. From a
deep learning perspective, this is the main neural network
design challenge: how to optimally split up the feature space
so each expert can specialize effectively while maintaining
balanced utilization. This project tries to fix these problems
by looking at different router designs that can make more
informed routing decisions while maintaining computational
efficiency.

C. Objectives & Contributions

The main goals of this project are: to design and build
several router types for Mixture of Experts (MoE) models,
using ideas from class; to make a flexible system for checking
and comparing these router designs using good neural network
study methods; to study the speed, efficiency, and how well
work is spread by different router types using careful math
methods; and to find the best router designs for different use
cases by carefully checking how they represent information.

Our main work is the creation and testing of six different
routers (linear, attention-based, MLP-based, hybrid, hash, and
hadamard), each showing a different way for information to
move in the network; a flexible MoE layer setup that can work
with different router types, which lets us try out different
network setups easily; a way to check router performance
using measures for information and how work is spread out;
and a close look at what different routers can represent and
how much computing they need for different ways of routing
information, especially for large language models.

II. RELATED WORK

Shazeer et al. [1]] first showed a sparsely-gated MoE layer,
where a gating network, typically a linear layer followed by
a softmax, determines which experts process each part of the
input. This architecture shows the viability of scaling neural
networks to “outrageously large” sizes by activating only a
subset of parameters per token.

Fedus et al. [2] further developed this with Switch Trans-
formers, scaling MoE models to trillion parameters. Their
router, similar to Shazeer et al., employed a linear projection
and softmax, but adding an auxiliary load balancing loss. This
loss term helps create a more uniform expert utilization, as
it helps the challenge in MoE training where some experts
become over-utilized while others are neglected. The Switch
Transformer also simplified the MoE design by routing each
token to only a single expert (top-1 routing), different to earlier
designs that might combine outputs from multiple experts.

Researchers have also looked at more interesting routing
mechanisms. Roller et al. [3] looked at hash-based routing
as a parameter-free alternative. Hash layers map inputs to
experts using hash functions, this gives a deterministic and
computationally inexpensive routing mechanism. However,
the fixed nature of hashing will limit adaptability and load
balancing without additional mechanisms.

Puigcerver et al. [4]] explored “soft” mixtures of experts,
moving away from hard, sparse gating towards mechanisms
that allow for smoother transitions and combinations of expert
contributions, potentially improving training stability and rep-
resentational power. Their work, along with others, looked at
the trade-offs between sparsity, expressiveness, and trainability
in router design.

The Mixtral of Experts model [7]] by Mistral Al represents
a recent successful application of MoE principles in large
language models. The router in Mixtral selects the top-k
experts, a now common strategy to balance sparsity with the
capacity to leverage multiple specialized networks.

Challenges in MoE training and routing, such as load imbal-
ance, expert specialization, and the computational overhead of
complex routers, remain active areas of research. This project
builds upon these prior efforts by designing, implementing,
and testing a set of router architectures. Our work differs
by providing a direct comparative analysis of these varied
router types within a standardized framework. We extend
previous studies by trying out new combinations like the MLP-
Hadamard router and by adding our analysis of the trade-offs
inherent in different routing strategies.

III. METHODOLOGY AND IMPLEMENTATION DETAILS
A. Overall System/Model Architecture

At the highest level, the system has these components:
(1) Router Implementations—a collection of different router
architectures that inherit from a common base class and imple-
ment various neural routing mechanisms; (2) MoE Layer—a
modular implementation of the Mixture of Experts layer that
can use any router implementation, serving as the core con-
ditional computation component; and (3) Evaluation Frame-

work—tools for testing and comparing different router designs
through principled deep learning metrics.

Figure 1 below shows the system architecture and the
interaction between its components.

B. Key Components/Modules

1) Router Base Class: We created a Router Base that that
serves as the foundation for all router implementations. It
provides a common interface and shared functionality. The
core method that all router implementations must override is
compute_router_probabilities, which takes token
hidden states as input and returns routing probabilities for each
expert.

2) Linear Router: We first started with a linear router. It
is a single linear projection from the hidden dimension to the
number of experts, followed by a softmax activation. This is:

p(e|x) = softmax(W -z + b) (1)

where z € R? is the token representation, W & Rnxd
is the weight matrix, b € R™ is an optional bias term, and
p(elz) € R™ is the probability distribution over n experts.
The linear projection shows the simplest form of feature
extraction for routing, by computing a similarity score between
the input and each expert’s weight vector through an inner
product. This is equivalent to a single-layer perceptron without
activation function before the softmax, providing a baseline
representational capacity.

3) Attention Router: The attention router adds transformer
architectures—the attention mechanism—to the routing prob-
lem. It treats token embeddings as queries and learns expert
embeddings as keys. This allows for more expressive routing
decisions through the powerful inductive biases of attention.
This is shown as:

scores(q, k) = A K 2
R e
p(e|x) = softmax(scores(q, k)) (3)

where ¢ = W, -2 € R?* represents token queries through a
learned projection W, € R4%>4 L € R"*? represents expert
keys stored as learnable parameters, dj is the dimension of
the key vectors, and 7 is a temperature parameter that controls
the sharpness of the distribution. Experts can be represented
as distinct embeddings in a learned space, allowing them to
develop specialized “’profiles” that tokens can match against.

4) MLP Router: The MLP router extends the linear router
by adding a hidden layer with non-linear activation, signif-
icantly increasing the expressivity of the routing function.
The multi-layer perceptron architecture allows learning more
complex routing patterns through non-linear feature transfor-
mations:

h=oc(Wi-x+b) “4)

p(e|x) = softmax(Ws - h + by))

Model Integration

MoEModelLoader

N

Evaluation & Benchmarking

Benchmarking Tools Im-eval-harness

]

Pretrained MoE Models

Model Analysis Tools

Model Evaluation

Routes through

Core Components

/

Tests

e
—

MoELayer

RouterBase

Expert Networks

— v ¢

NS —

LinearRouter AttentionRouter MLPRouter

HybridRouter HashRouter HadamardRouter

Fig. 1: High-level architecture of the MoE system with modular router components

where ¢ is a non-linear activation function, h € R% is
the hidden representation, and W, € R > W, ¢ R"*dn,
by € R¥™, by € R™ are learnable parameters. The non-
linearity allows the router to partition the feature space in ways
that are not possible with linear projections alone, adding a
more expressive routing decisions based on complex feature
interactions.

5) Hybrid Router: The Hybrid Router combines linear
and attention-based routing mechanisms. It computes routing
scores through both methods and combines them using a
learned or fixed weighting parameter:

6) MLP Hadamard Router: We were curious about looking
at different feature interactions for routing beyond simple
concatenation or summation as in hybrid approaches, thus
we implemented an MLP Hadamard router. This router first
processes the input token representation 2 € R? through
a standard MLP layer to get an intermediate representation
Romip € R4 . This is then combined with the original input
token representation x (or a projection of it) using an element-
wise Hadamard product (®). The idea of this is that the MLP
can learn to extract features that, when multiplied with the
original features, highlight or suppress specific aspects relevant
for routing.

hmlp = O'(Wl - T+ bl) (6)

where W, € R%*4 and b, € R%. If d), # d, might
be projected to dj, using W, € R4) = W, - z. The
Hadamard product is then:

(or hip @z if dp, =d) (7)

hhadamard = hmlp © Tp

The resulting vector hpgdamard € R i passed through
another linear layer to produce the expert logits:

p(e|z) = softmax(Ws - hpadamard + b2) ®)

where W5 € R"* and by, € R™. This goal is to create an
expressive routing function than a standard MLP alone.

7) Hash Router: We implemented a hash router, as we have
seen this to be extremely fast (although in our implementation
was the slowest by an order of magnitude). This router uses
a hashing function to deterministically map input tokens to
experts. Unlike other routers that learn routing policies, the
hash router relies on a fixed, non-learned assignment strategy.
We implemented this by applying a chosen hash function to
the token representation z (or a derivative of it) to produce
a hash value. This value is then mapped to an expert index,
using the modulo operator with the total number of experts
E:

©))
(10)

hash_value = HashFunction(x)

expert_index = hash_value (mod F)

The resulting routing “probability” distribution p(e|z) for
a given token is effectively a one-hot vector, assigning a
probability of 1 to the selected expert and O to all others:

1 if ¢ = expert_index

ples|z) = (1)

0 otherwise

In theory, the advantage of this approach is its computational
speed and simplicity, as it bypasses the need for learnable
parameters and calculations in the routing step itself. Its
performance is dependent on the hash function’s ability to
distribute tokens well, and does not have the adaptability
that the learned routers have. Ensuring the load balance was
challenging as the hash function easily adapts to the parameter
distribution.

8) MoE Layer: The MoE layer is a modular layer for any
of the router implementations. It handles routing tokens to ex-
perts based on the router’s decisions, combining outputs from
multiple experts using weighted aggregation, and computing
load balancing loss to make sure uniform expert utilization.
The MoE layer is designed to be a drop-in replacement for a
standard feed-forward network in transformer models, keeping
the same input and output dimensions while using a special-
ized internal structure that enables conditional computation
through expert selection.

9) Base MoE Model - BERT: To characterize our con-
structed routers, we needed a reproducible and publicly avail-
able testbed that would allow us to apply each router in con-
junction with a feed-forward network (FFN) in a transformer-
like setting. For this, we used BERT (Bidirectional Encoder
Representations from Transformers) as the foundation of our
evaluation framework [8]].

BERT’s architecture is relatively simple compared to more
recent decoder-only models, making it easier to integrate cus-
tom router components. Its pre-training objectives—masked
language modeling (MLM) and next sentence prediction
(NSP)—allow BERT to learn token representations. BERT
models are readily available as pre-trained checkpoints through
the Hugging Face model hub, which gave us a starting point
without the need for training.

By using BERT’s token embeddings as input to our router
modules, we made sure that the routing evaluation was done
under realistic activation patterns, rather than random tensors.
We used these contextual embeddings to see how different
routers handle token interactions.

We took out the feed forward network weights from the
first encoder layer of a pre-trained bert-base-uncased model.
We copied the parameters from the intermediate.dense and
output.dense layers into the expert networks of our MoE
modules, this weight initialization made sure that the MoE
experts operated with the real learned parameters.

10) Base MoE Model - Qwen: We also chose
Qwen/Qwenl.5-MoE-A2.7B-Chat-GPTQ-Int4 as
another base model to work with as well after seeing our
sucess with BERT. Its MoE architecture is publicly available
and characterized, providing a good testing are for router
designs. The “MoE-A2.7B” means the model activates 2.7
billion parameters per token during inference, while its total
parameter count is 14.3 billion. This architecture has 60
expert networks. The router selects the top k = 4 experts to
process each token.

Qwenl.5 is a decoder-only Transformer model. Qwenl.5-
MoE uses an MoE layer instead of standard Feed-Forward
Networks (FFNs). This layer has the router and 60 FFN
experts. Each expert is a SwiGLU (Swish Gated Linear
Unit) FEN. It takes an input Zcgper¢ (output from the pre-
ceding layer, routed to this expert) and applies transforma-
tions defined by weight matrices W, V,W,. The formula-
tion is SWIGLU(Zegpert, W, V,W2) = (SiILU(ZezpertW) ©
ZezpertV) Wa. This provides non-linear transformations. Qwen
models use RMSNorm (Root Mean Square Layer Normal-
ization) to stabilize training and improve performance. RM-
SNorm is applied before attention and FFN sub-layers. For

an input vector x € RPmoder,. RMSNorm calculation is
RMSNorm(z) = - g. Here, g is a

x
TR
learnable gain parameter and € is a constant for numerical
stability. Rotary Positional Embeddings (RoPE) add sequence
order information. RoPE modifies query ¢, and key k,
vectors at positions m and n by applying rotation matrices
Ro.m and Ren: ¢, = Ro.mam and ki, = Reg ,ky. This
encodes positional information within the self-attention mech-
anism. The Qwen1.5-MoE-A2.7B router is a linear projection
Wyoute € RPmeactxNe (N = 60 experts) from the model
hidden dimension to the expert count. This is followed by a
softmax activation and top-4 selection, providing a baseline.

The “-Chat” part mean that we are using the model that has
instruction-tuning and fine-tuning for conversational tasks. The
“-GPTQ-Int4” part means that the model has had post-training
quantization by the GPTQ algorithm to 4-bit integer precision.
We did this so we would able to run this on a single A100
and even an L4.

C. Data Flow

Input Hidden States
(batch_size, seq_len,
hidden_size)

Router Component

(RouterBase
Implementation)

Expert Indices
(batch_size, seq_len,

N

Expert Weights

(batch_size, seq_len,
top_k)

Expert Routing Logic

!

Expert 2

Expert 1 |

Expert N
/ v

Router Probabilities
(batch_size, seq_len,
num_experts)

Combine Expert Outputs
w/ Routing Weights

l

Output Hidden States
(batch_size, seq_len,
hidden_size)

\

Fig. 2: Data flow through core components in the forward pass

A4

Auxiliary Loss
(Load Balancing)

Final Output
(Output, AuxLoss)

The system is made to work with token represen-
tations from transformer models, typically with shapes
(batch_size, sequence_length, hidden_size). The represen-
tation space in which routing occurs is the same high-
dimensional embedding space used throughout transformer

models, making this a natural extension of the standard
architecture.

D. Formulation

1) Router Selection Process: Given token representations
X € RBXSxH (where B is batch size, S is sequence length,
and H is hidden dimension), the router computes probabilities
P € RB*SXE (where E is the number of experts) and
selects the top-k experts for each token through a differentiable
approximation of argmax:

indices; ; = topk(P; ;, k) (12)
weights; ; = P; j indices; ; (13)
. weights,

weights, ; = (14)

k)
Dot weights;

where topk(P; j, k) returns the indices of the & highest
values in F; ;, and the weights are normalized to sum to I.
The top-k selection adds a non-differentiable operation in the
forward pass, but gradients can still flow through the selected
experts using the straight-through estimator.

Router Probabilities Expert Indices

) .

Expert Importance
(Mean prob across tokens)

| !

Expert Load
(Sum of weights per
expert)

Auxiliary Loss

Z(importance”2 x load) x
num_experts

}

Weighted Auxiliary Loss
loss x aux_loss_weight

Expert Weights

Expert Mask

(One-hot encoding)

Expert Importance’2

—

Fig. 3: Auxiliary Loss Mechanism

2) Auxiliary Load Balancing Loss: To have balanced expert
utilization, we calculate the auxiliary load balancing loss.
Following [1]], [2], this loss aims to distribute the computa-
tional load more evenly. First, we define the fraction of tokens
dispatched to expert e across a batch,

expert_load,:

| B .Sk
fe= 5.5 ZZZH((indiCGSiJ)l =e)

where I(+) is the indicator function. This f. corresponds to
expert_load, in your text if mask; ; is summed over experts.

(15)

The average routing probability (or importance) assigned to
expert e:

(16)

This g. corresponds to your expert_importance,. The aux-
iliary loss Ly« is then formulated as the scaled dot product
of these two quantities, summed over experts:

E
»Caux = Qgux 'E'Zfe " Je
e=1
where ag,,, 1s a hyperparameter. The original Switch Trans-
former paper [2|] uses a slightly different formulation that
involves the square of the importance, which you have:

a7

E
Lax = QauzF ~Z(expert_imp0rtancee)2~expert_loade (18)
e=1
This penalizes both imbalance in the number of tokens
routed to each expert (via expert_load,) and imbalance in the
router’s confidence for each expert (via expert_importance,).
The quadratic term discourages the router from assigning high
probabilities to only a small subset of experts.

E. Experimental Setup / Training Process

1) Benchmark Setup: All router evaluations were conducted
using Google Colab Pro+, using a GPU-accelerated environ-
ment for performance measurements. We tried to use GCP,
but were not able to get an A100 quota. The codebase was
done in Python 3.11.12. Each router is in a modular class
structure imported by cloning our GitHub repository into the
working directory. The instance was run on Ubuntu 22.04
(Linux Kernel 6.1) as the operating system, a 6-core, 12-thread
CPU, 84 GB of RAM, with an NVIDIA A100 40GB GPU with
CUDA support enabled.

2) Base Models and Datasets: We use two base models for
experiments: BERT [§]] and Qwenl.5-MoE-A2.7B [7]. BERT
gives a transformer architecture for router characterization
with its learned token embeddings. The Qwen1.5-MoE model,
uses a native MoE architecture, and is small and good for
router performance evaluation and fine-tuning. We add the
routers by replacing gating mechanisms in these models. For
fine-tuning tasks during router replacement and adaptation
functionality, we use the Tiny Shakespeare dataset.

3) Evaluation Metrics: Expert utilization analysis deter-
mines how routers distribute tokens across experts. This
is visualizing the token distribution to identify biases
or imbalances, calculating routing entropy as H(P) =
— Zle De log p. where p. is the proportion of tokens routed
to expert e, and looking at the auxiliary load balancing loss
Lax as an sign of expert engagement. We measure token
latency as the time for a single token to pass through the router
and selected expert(s) during inference, benchmarked with a
batch size of 1 to isolate per-token processing overhead. We
also looked at router output characteristics, including mean
top-k probabilities and variance of routing scores, to give
insights into router behavior.

4) BERT - Random Initialization Evaluation: In the initial
round of evaluations, we tested all routers using randomly
initialized hidden states to establish a performance baseline.
Under these conditions, the routers showed expected behav-
ior patterns, with lightweight designs like the LinearRouter
achieving the fastest inference times, while more complex
architectures such as the MLP and Hybrid routers demon-
strated greater routing diversity. Although effective for ver-
ifying implementation correctness, random activations lacked
the contextual richness needed to fully assess router behavior
in realistic settings.

F. BERT - Pretrained Initialization Evaluation

To simulate real-world usage, we conducted a second round
of evaluations using hidden states derived from a pretrained
BERT model. With contextualized token embeddings, routers
exhibited more distinct and polarized routing patterns, showing
the meaningful structure of the input data. Output variance
increased across all routers, with the MLP router showing
the largest shift, highlighting its capacity to leverage pre-
trained knowledge for nuanced expert selection. Expert utiliza-
tion became more concentrated, showing how certain routers
prioritize specific experts when handling semantically rich
inputs. This BERT-based evaluation provided a more realistic
and informative measure of each router’s practical routing
dynamics.

G. Fine-Tuning the Linear Router

We load a Qwen/Qwenl.5-MoE-A2.7B checkpoint in 16-
bit precision, distributed over available hardware. We look
for each Mixture-of-Experts layer by the .experts and
.router attributes, look the expert’s input size, and replaces
the existing gating router with our LinearRouter. The
model is placed into a Parameter-Efficient Fine-Tuning (PEFT)
LoRA wrapper to avoid tuning all 14 billion parameters. We
update only the four per-attention-block projection matrices
(q_proj, k_proj, v_proj, o_proj) using low-rank (rank = 8)
residual adapters with o« = 32 and 5 percent dropout. This
LoRA method reduces trainable parameters to several hundred
million, which permits fine-tuning on hardware with limited
resources.

We load the Tiny Shakespeare dataset, comprising 100 lines
of text. Each line of text is tokenized with truncation and
padding to a sequence length of 256. The result is converted
to a PyTorch dataset of input IDs and an attention mask. Labels
are set equal to input IDs for causal language modeling.

The Trainer is configured with a batch size of 2, gradient
accumulation over 4 steps (yielding an effective batch size
of 8), a learning rate of 2 x 10~%, mixed precision (fp16),
and 50 gradient steps. Logging occurs every 10 steps, and
checkpointing occurs every 50 steps. A data collector places
inputs and targets into tensors.

H. Fine-Tuning the Attention Router

The core of our approach is the AttentionRouter class. It
takes hidden size (the size of token embeddings), number of

experts, and a new default top k as 8. Internally, it projects
each token into a lower gk-dim—dimensional query space by a
learnable nn.Linear(hidden-size, gk-dim). Each expert is stored
in self.expert embeddings as its own gk-dim-vector. These two
components queries and expert centroids are the core of our
routing attention.

We initialize the weights and the query projection uses a
Gaussian initialization (mean 0, std 0.02), and expert embed-
dings are either uniformly or normally distributed based on
the init expert centroids flag. This makes sure that the keys
and queries start in approximately the same scale before any
training.

Routing probabilities are computed in compute router prob-
abilities(). We reshape 2 dimensional inputs (batchxhidden) to
3 dimensional (batchxseqxhidden) when needed. We project
tokens, and then we L2-normalize to avoid dot products drift-
ing. We reshape queries and keys to the expected shape and use
flash attn func, reshaping the output to (batchxseqxnum ex-
perts). Otherwise, we compute the normal scaled dot-product,
where T is the temperature. :

QKT
Vak_dim ’

The result is a proper probability distribution over experts
for each token. The forward() function places inputs on the
router device, invokes compute router probabilities() function,
and then takes the log (with small epsilon) to match the
seen “router scores” interface to the MoE block. Log-taking
is useful numerically when the resulting scores would be
combined with downstream expert outputs.

To add our new router to Qwen, replace-qwen routers()
walks through every sub-module looking for the old gate and
an.experts list like we have done previously while implement-
ing our Linear Router mechanism. It prints each location, looks
at either module.gate.weight.shape or defaults to expert.gate
projection to find (number of experts, hidden size), and reads
the original top k or defaults to 8. Then it creates an Attention
Router with those sizes and replaces both module.gate and, if
present, module.shared expert gate. It keeps a count of the
number of replacements made.

Next, we once more wrapped the model within PEFT’s
LoRA but this time included the new query projection to the
target modules. Thus, the adapter layers will not just learn low-
rank updates over the typical attention projections but also our
routing query projection, enabling us to parameter-efficiently
fine-tune the router itself.

The TrainingArguments mirror our previous experi-
ment: we use a per device batch size of 2 with gradient
accumulation over 4 steps (for an effective batch size of 8), a
learning rate of 2x10~*, mixed-precision training (fp16), and
a fixed budget of 50 total gradient steps. Metrics are logged
every 10 steps.

scores
scores —

P = Softmax<) 19)

IV. RESULTS AND EVALUATION

Each router was characterized through 1,024 inference runs,
with 5 repetitions per router, and results were averaged.

TABLE I: Comparison of MoE Router Configurations on Model Parameter Size.

Parameter count reflects the total number of trainable parameters within each router module. Input Configuration: Batch Size = 16, Sequence Length = 128,

Hidden Size = 768

Router

Parameter Size

Linear
Attention
MLP
Hybrid
Hadamard
Hash

6,144
49,664
101,000
55,810
101,000

0

TABLE II: Comparison of MoE Router Configurations on Routing Behavior and Latency with Randomly Initialized Hidden

states.

Input Configuration: Batch Size = 16, Sequence Length = 128, Hidden Size = 768, Average of 1024 runs

Router Token Latency (ms) | Entropy | Mean Top-k Prob.
Linear 0.07 1.9513 0.2129
Attention 0.29 2.0793 0.1273
MLP 0.23 2.0769 0.1361
Hybrid 0.58 2.0476 0.1686
MLP-Hadamard 0.88 1.1003 0.4152
Hash 85.0 0.0000 0.5000

1) Random Initialization: When we fine tuned linear and
the attention on the Qwen model we saw that the loss was
decreasing but had difficulty using this on datasets.

Linear Attention Hybrid MLP-Hadamard Hash

MLP
1
- 01265 | 0.2260 020
- 0.00006
- 0.1260 -0.127 o125 o018
0.00004 N
foress 0126 2 0.16
N $ 2 o12s0 E -
g 0.1250 2 - 0.00002 & g]
H g H o125 3 014 £
01245 2 01245 &
: 0.00000 012
0124
01240 01240
-0.00002 010
01235 0123 01235

Fig. 4: Visualization of Router Output Probabilities Across an
Input Sequence. Each heatmap displays the probability distri-
bution assigned by the respective router (Linear, Attention,
MLP, Hybrid, MLP-Hadamard, and Hash) to eight experts
(implicit x-axis) for a sequence of input token representations
(y-axis). Color intensity corresponds to the probability, with
scales provided by the color bars.

-0130

0128

0126

Hybrid
MLP-Hadamard

0124

0122

0120

Figure [4] shows a comparison of how different router ar-
chitectures distribute routing probabilities across the available
experts for a sequence of input tokens. The Linear, Attention,
MLP, and Hybrid routers have a relatively smooth probability
assignments, showing a softer allocation of tokens. In contrast,

the MLP-Hadamard and Hash router a concentrated probabil-
ity distribution, often strongly favoring a smaller subset of ex-
perts, this might be its design combining MLP expressiveness
with Hadamard-influenced feature interaction.

Linear MoE Output Distribution

Attention MoE Output Distribution MLP MoE Output Distribution

04 02 02 04 04 -02 00 02 04
Output Value

Distribution MLP-Hadamard MoE Output Distribution

00
Output Value
Hybrid MoE Output Distribution

ol
o6 -04 -02 00 02 04

Output value

o o4 <4 -02 00 02 04

Output Value Output Value

Fig. 5: Histograms of MoE Layer Output Value Distributions
for Different Router Configurations. Each histogram shows the
frequency distribution of the aggregated output values from the
MoE layer when using the specified router (Linear, Attention,
MLP, Hybrid, MLP-Hadamard). These distributions show the
impact of different routing strategies on the final activations
passed to subsequent layers.

The distributions of the MoE layer’s output activations,
in Figure [5] show how different routing mechanisms change
the information passed forward. Most routers (Linear, Atten-
tion, Hybrid, MLP-Hadamard) produce output distributions
that approximate a normal distribution, which is consistent
with the combination of multiple expert outputs and add the
Central Limit Theorem. Notably, the MLP router, results in
an output distribution with a significantly different scale and a
tighter concentration around zero compared to the others. This

suggests that the MLP router, potentially due to its increased
representational capacity or specific learned routing patterns
during this un-fine-tuned BERT-based evaluation, might be
leading to a more selective or compressive effect on the

activations.

1l |
|
M |

Fig. 6: Per-Token Expert Routing Probability Distributions for
Various Routers. This figure displays bar charts illustrating the
probability assigned by each router (Linear, Attention, MLP,
Hybrid, MLP-Hadamard) to each of the 8 experts (x-axis) for
five different example tokens (Token (0,0) to (0,3)). The y-axis
represents the probability. This shows the fine-grained routing
decisions made by each architecture for specific inputs, Notice
the hard k=2 expert routing characteristics of Hadamard.

Figure [6] shows the expert probability assignments for
individual tokens across the different router architectures. The
Linear, Attention, MLP, and Hybrid routers generally are more
distributed set of probabilities across the experts for any given
token, although preferences for certain experts can still be ob-
served. This makes sense with their design allowing for softer,
more expressive routing. The MLP-Hadamard router, however,
has a distinctly different behavior, consistently assigning high
probabilities to a very sparse set of experts (often two) for
each token, indicating a more deterministic and concentrated
routing strategy.

V. DISCUSSION

The LinearRouter offered computation efficiency but
had limited expressive power for complex token-to-expert
mappings. The MLP router’s capacity had varied routing
dynamics, useful for tasks needing specific token han-
dling. Deterministic routers, like Hash and the initial
HadamardRouter, ensure predictable expert selection but
can cause poor load balancing without design considerations.
The HadamardRouter’s top-k constraint mitigated this,
achieving controlled sparsity with diversity. Results confirm
low routing entropy correlates with concentrated top-k prob-
abilities, leading to deterministic behavior. Higher entropy
promotes broad expert utilization, which balances load but
can reduce routing specificity. Router evaluations with random
inputs did not consistently show these performance charac-
teristics. Using pretrained BERT weights for initialization
showed more representative routing behaviors. This the need

for appropriate initializations for router assessment. The MLP
router’s performance under such conditions indicates complex
routers, despite higher computation needs, can achieve se-
lective, efficient expert usage with correct initialization and
constraints.

Router architecture evaluation revealed design trade-
offs and performance. The HadamardRouter develop-
ment shows this the most. We initially designed the
HadamardRouter as parameter-free. It used a Hadamard
matrix for computation simplicity and deterministic routing.
Early tests showed a problem: the router directed all tokens to
a single expert. This caused load imbalance and stopped MoE
sparsity benefits.

We changed the Hadamard matrix. It functioned as a struc-
tural regularizer to impose orthogonality and prevent expert
collapse, not as a direct router. Second, we implemented a
k-experts hyperparameter to limit expert selection per token.
These changes made a more stable and predictable module.
The modified HadamardRouter routed tokens to two ex-
perts.

A. Fine-Tuning the Linear Router

Fine-tuning with LoRA adapts the pre-trained base model
to the Shakespearean text domain without retraining the entire
model. This also is a test for the router replacement. A
monotonic loss curve shows the correct functioning of the new
routing mechanism.

During the initial ten steps of fine-tuning, the training loss
decreases from 1.9086. This initial loss value means that the
model’s next-token predictions do not yet reflect the patterns
in the dataset.

By step twenty, the loss decreases to 0.1569. This is where
adapter weights adapt to token sequences in the 100 lines.
At step thirty, the loss reaches 0.0027. This loss value high
model confidence in its predictions and suggests memorization
of training instances.

From step forty to step fifty, the loss changes from 0.0009
to 0.0006. These changes mean there are now diminishing
returns from further optimization, and the model converges
on the training set. This means that the fine-tuning pipeline
functions as designed.

The decrease in loss from approximately 1.9 to near zero
within thirty updates on 100 lines of text make it look like the
model is overfitting. Cross-entropy losses in the 1073 range
mean that the model memorizes sequences in the training set
rather than learning generalizable patterns.

B. Fine-Tuning the Attention

Early in training (Step 10, loss = 9.645), the model’s
parameter including both the Transformer layers and the newly
introduced attention-router projections are essentially at their
random initial values. At this stage, the next-token prediction
task is barely better than chance, which is exactly what you’d
expect when neither the expert assignments nor the core
language model weights have had time to adapt to the data.

By twenty steps (Step 20, loss = 6.0565), we begin to
see the effects of learning kicking in both within the routing

mechanism and also in the LoRA adapters. The router is
beginning to specialize which expert it will consult for each
token, and the base model parameters are shifting towards
known Shakespearean patterns. That decrease of roughly 3.6 in
loss over the span of ten steps represents good early progress.
At the halfway mark (Step 30, loss = 3.5086), the training
loss has halved once more. Here the model is refining its
token-to-expert mappings and more confidently predicting the
next character in each sequence. By step forty (Step 40,
loss = 1.7095), most of the learning is primarily on this
extremely tiny 100-line dataset. The model is now placing
most of its probability mass on the correct next token, but
with a tiny error buffer. This means that while it has grasped
the broad statistical trends, a little bit of room remains for
more calibration. Finally, at fifty updates (Step 50, loss =
0.7318), the model has strong predictive confidence its loss
has decreased below one. Unlike the linear router experiment,
which drove loss towards zero (making it look like it was just
near-perfect memorization), our attention-based router follows
a slower, more gentle decline. This is due to it learning
more thoughtfully and retaining some uncertainty rather than
overfitting the toy corpus instantly.

C. Comparison with Prior Work

The LinearRouter, similar to designs by Shazeer et
al. [[1]], Fedus et al. [2], and Mixtral [7], showed efficiency
(0.07ms latency, Table I). Its entropy (1.9513) was less than
the AttentionRouter (2.0793). This shows routing with
less adaptation and motivates exploring other mechanisms.

The AttentionRouter and MLPRouter aim for ex-
pressiveness beyond linear-type projections. The MLPRouter
with pretrained BERT embeddings (Figure [5) showed an
output distribution with specific characteristics, using input
features for expert selection. Attent ionRouter fine-tuning
on Qwenl.5-MoE showed a learning trajectory (loss 9.645
to 0.7318, 50 steps) different from LinearRouter’s over-
fitting. Attention’s inductive biases may benefit routing and
generalization, seeing similar to soft-mixture [4].

The MLP-Hadamard router is a new design. Unlike hash-
type routing [3]], it uses Hadamard interaction within an MLP,
regularized and constrained to top-k selection (two experts). It
got the minimum entropy (1.1003) and maximum mean top-
k probability (0.4152) in static-condition tests. This adds a
mechanism for sparsity and expert specialization with struc-
ture, differing from standard top-k selection.

D. Limitations and Challenges

One of the biggest challenges we had during the fine-
tuning was adapting the Qwenl.5MoE model architecture to
work successfully with our custom router implementations.
The Qwenl.SMoE model uses a specific gating mechanism
that needed to be completely replaced. To fix this, we built
a helper function that “walks” the Qwenl.5MoE graph, spots
every router, and swaps in our router implementation. First, we
had to reverse-engineer Qwenl.SMoE’s internal gating mech-
anism, identify exactly where and how each router connected
into its specialists, and then modify our new router to slot

in without disrupting any of the surrounding wiring. We cre-
ated a replace_qgwen_routers () utility that recursively
searches every sub-module for the giveaway.router and
.experts properties, saves the dimensions and routing hy-
perparameters of the original router, and substitutes it with
our AttentionRouter in place of the old gate. By simply
replacing the router objects without touching expert layers,
remaining connections, and forward-pass logic even in cases
where multiple gates share the same experts , we are able to
preserve the integrity of the original design and simply insert
our attention-based routing mechanism.

Additionally, dealing with the GPTQ quantization format
introduced a whole new level of complexity, since our Atten-
tionRouter just couldn’t inherit the compressed 4-bit weight
tensors in their original form. When we tried to load a fine-
tuned GPTQ checkpoint, PyTorch would give “unexpected
keys” (e.g., query_proj.lora_A.default.weight)
error precisely because our custom router parameters didn’t
exist within the original MoE structure.

Besides that, linear layers quantized reveal non-standard-
shaped and bit-packed weights, and naively copying dimen-
sions would have broken downstream matrix multiplies. To
fix this, we added a dimension-sniffing routine that introspects
floating-point and GPTQ quantized layers both pulling in/out
features regardless of whether the data is in weight .data
or a compressed buffer , and we changed our AttentionRouter
constructor to accept those dimensions explicitly. That way,
whether the parent model is saved in a GPTQ format or not,
our code correctly allocates and initializes each projection
matrix, aggregates in LoRA adapters when present, and avoids
missing-key or shape-mismatch errors during the forward pass.

Scaling our own AttentionRouter on top of the already
enormous Qwenl.5SMoE base foundation produced its own
memory and performance problems. With 2.7 billion base
parameters and LoRA adapters to boot, GPU memory was
not enough, and the extra tensors used to calculate the at-
tention scores just added to the pressure. Benchmarks that
handled hundreds or thousands of examples in parallel would
sometimes overwhelm even high-end cards like A100, and
inference latency increased dramatically especially on devices
where FlashAttention kernels were not available. In order to
keep experimentation moving, we added “quick test” modes
that subsample data. These changes allow us to guarantee
correctness without incurring the full memory or speed cost
of a production run each time.

VI. CONCLUSION

We created a framework that did a comparative analysis of
Linear, Attention, MLP, Hybrid, MLP-Hadamard, and Hash
routers, characterizing their performance using latency, pa-
rameter count, routing entropy, and expert utilization. Our
experiments, conducted with both randomly initialized and
pretrained BERT embeddings, and through fine-tuning on the
Qwenl.5-MoE model, showing the operational characteristics
and trade-offs inherent in each design.

We see that simpler routers like the LinearRouter achieve
low latency, while more complex architectures such as the

MLP and Attention routers offer increased representational
power, leading to more nuanced routing decisions. The new
MLP-Hadamard router provided a structured approach to
achieving sparse expert activation. A key part of this report
was the successful integration and fine-tuning of our custom
routers, including the AttentionRouter, within the quantized
Qwenl.5-MoE architecture. This process involved large chal-
lenges from model introspection, parameter adaptation for
quantized layers, and managing computational resources. Our
report shows the role of router design in MoE performance and
the importance of context-aware evaluation using pretrained
models.

VII. SUPPLEMENTAL

We tried many routers, the six in the main report we found
to be the most useful, but one that just didnt make the cut as
it was very hard to work with.

TABLE III: Supplemental Router Performance Metrics with
Pretrained BERT Initialization

Router Type Entropy Mean Top-k Prob. Output STD Auxiliary Loss
Linear 2.0680 0.1486 0.03083 0.00126
Attention 2.0793 0.1271 0.02950 0.00125
MLP 2.0793 0.1277 0.06820 0.00125
Hybrid 2.0767 0.1368 0.03197 0.00126
Hash 0.0000 0.5000 0.03213 0.00229
Self-Supervised ~ 0.6146 0.5000 0.02987 0.00218

1) Self-Supervising Router: We also wanted to look at a
self-supervised router to use input representations for making
routing decisions. The main idea is that features learned from
self-supervised pretext tasks can provide more information for
determining expert assignments. In our implementation, the
self-supervised router first processes the input token repre-
sentation x € R? using a feature extractor network, fy. ().
The parameters 6, of this network can either be pre-trained
using a self-supervised objective L, or they can be trained
concurrently with the main model.

zh = fo..(2)

The features =/, € R%: extracted by this network are then
passed to a subsequent routing head to compute the final expert
probabilities:

(20)

plelz) = softmax(Wipute - Thy + broute) 21)

where Wyoute € R™"%%: and byouse € R™. We see that by
utilizing representations refined through self-supervision, this
router could see more more structural properties of the tokens,
having a more effective partitioning of the problem space. As
it L4, takes the form:

exp(sim (w4, L) /Tss)
/ /

Lss=—1o
&S exp(sim(al,, 2%,) /Tes)

(22)

’ . I . / /— . .
where z’! is a positive pair to z’,, T, ; are negative pairs,
sim(-) is a similarity function (e.g., cosine similarity), and 7

is a temperature parameter for the self-supervised task.

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

REFERENCES

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, "Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” in International Conference on Learning Rep-
resentations (ICLR), 2017.

W. Fedus, B. Zoph, and N. Shazeer, ”Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity,” Journal of
Machine Learning Research, vol. 23, pp. 1-39, 2022.

S. Roller, S. Sukhbaatar, A. Szlam, and J. Weston, "Hash layers for large
sparse models,” in Advances in Neural Information Processing Systems
(NeurIPS), 2021.

J. Puigcerver, Y. Tay, L. Borgeaud, C. Lassner, and N. Jaitly, “from
sparse to soft mixtures of experts,” in Advances in Neural Information
Processing Systems (NeurIPS), 2023.

T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, “FlashAttention: Fast
and memory-efficient exact attention with IO-awareness,” in Advances
in Neural Information Processing Systems (NeurIPS), 2022.

Mistral Al, “Mixtral of Experts,” Technical Report, 2023.

A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C.
Bamford, D. S. Chaplot, D. de las Casas, E. B. Hanna, F. Bressand,
G. Lengyel, G. Bour, G. Lample, L. R. Lavaud, L. Saulnier, M.-A.
Lachaux, P. Stock, S. Subramanian, S. Yang, S. Antoniak, T. Le Scao,
T. Gervet, T. Lavril, T. Wang, T. Lacroix, and W. El Sayed, “Mixtral of
Experts,” arXiv preprint arXiv:2401.04088, 2024.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” arXiv
preprint arXiv:1810.04805, 2019.

	Introduction
	Background
	Problem Statement & Motivation
	Objectives & Contributions

	Related Work
	Methodology and Implementation Details
	Overall System/Model Architecture
	Key Components/Modules
	Router Base Class
	Linear Router
	Attention Router
	MLP Router
	Hybrid Router
	MLP Hadamard Router
	Hash Router
	MoE Layer
	Base MoE Model - BERT
	Base MoE Model - Qwen

	Data Flow
	Formulation
	Router Selection Process
	Auxiliary Load Balancing Loss

	Experimental Setup / Training Process
	Benchmark Setup
	Base Models and Datasets
	Evaluation Metrics
	BERT - Random Initialization Evaluation

	BERT - Pretrained Initialization Evaluation
	Fine-Tuning the Linear Router
	Fine-Tuning the Attention Router

	Results and Evaluation
	Random Initialization

	Discussion
	Fine-Tuning the Linear Router
	Fine-Tuning the Attention
	Comparison with Prior Work
	Limitations and Challenges

	Conclusion
	Supplemental
	Self-Supervising Router

	References

