
LSTM Fully Convolutional Networks for Time
Series Classification

Sion Chun1 (sc3791), Michelle Twan1 (mt3565), George Weale2 (gmw2143)
1Computer Science, 2Biomedical Engineering

Columbia University
New York, USA

Abstract—Time series classification is critical in many fields,
including healthcare and finance, necessitating models that ef-
fectively capture both short-term and long-term temporal pat-
terns. In this project, we replicate, evaluate, and enhance the
Long Short-Term Memory Fully Convolutional Network (LSTM-
FCN) architecture originally proposed by Karim, Majumdar,
and Darabi in their influential work ”LSTM Fully Convolu-
tional Networks for Time Series Classification” [1]. Utilizing
TensorFlow, we developed implementations of both the standard
LSTM-FCN and its attention-enhanced variant, ALSTM-FCN,
and evaluated their performance using the UCR Time Series
Classification Archive [2]. Although we successfully reconstructed
the model architectures, the classification accuracies achieved did
not reach the levels reported in the original study. To bridge this
performance gap, we created our own model with changes in the
architecture, where we are able to match the performance of this
paper on many data sets. This report outlines our implementation
process, highlights the technical challenges encountered, and
presents our model performance results. We look at the reasons
for the observed discrepancies and propose strategies for future
work aimed at enhancing model performance to more closely
align with the original findings.

I. INTRODUCTION

Time series classification has been extensively studied,
with many different approaches proposed to capture temporal
dependencies and feature representations. Traditional methods
like Shapelets [5] and Time Series Forests [6] rely on hand-
crafted features, which can be limiting in capturing complex
patterns. Deep learning models, particularly Fully Convolu-
tional Networks (FCNs) [8] and Long Short-Term Memory
(LSTM) networks [3], have shown significant improvements
by learning feature representations directly from raw data.

Recent advancements incorporate attention mechanisms to
enhance model interpretability and performance [11]. For
instance, the Attention LSTM-FCN (ALSTM-FCN) model
integrates multi-head attention with LSTM layers, allowing
the network to focus on the most relevant temporal segments
[1]. Additionally, Squeeze-and-Excitation (SE) blocks [3] have
been employed to recalibrate channel-wise feature responses,
further improving model performance and robustness.

This project builds upon these developments by replicating
and enhancing the LSTM-FCN and ALSTM-FCN architec-
tures, incorporating SE blocks to investigate their impact on
classification accuracy and model interpretability.

Time series classification has emerged as a critical task
in machine learning, with applications in healthcare [5] and

finance [6]. Traditional methods often rely on hand-crafted
feature extraction and pre-processing, which can be computa-
tionally expensive and require domain expertise [7]. Recently,
deep learning approaches such as Fully Convolutional Net-
works (FCNs) [8] and Long Short-Term Memory (LSTM)
networks [3] have demonstrated state-of-the-art performance
in end-to-end time series classification [9].

In this work, we replicate and analyze the LSTM-FCN
architecture proposed in the original paper, which augments
FCN models with LSTM or Attention-LSTM blocks for im-
proved time series classification performance [1]. The pro-
posed model leverages temporal convolutions for efficient
feature extraction and LSTMs to capture long-term tempo-
ral dependencies [10]. Additionally, the attention mechanism
enables more interpretability by identifying the most relevant
parts of the time series data.

We implemented the LSTM-FCN and ALSTM-FCN models
using TensorFlow [12] and evaluated them on UCR datasets
[2]. Despite successfully replicating the model architecture,
our results did not achieve the accuracy levels reported in the
original paper.

II. SUMMARY OF THE ORIGINAL PAPER

A. Methodology

The original paper combines FCNs [8] with LSTM networks
to improve time series classification. FCNs extract local fea-
tures using temporal convolutions, but they lack mechanisms
to capture long-term dependencies. To address this, LSTM
blocks are integrated to model temporal relationships effec-
tively [14].

They used an attention mechanism [11] to aid the LSTMs
by focusing on key regions of the input sequence, improving
interpretability [15]. The resulting models–LSTM-FCN and
Attention LSTM-FCN (ALSTM-FCN)–achieve state-of-the-
art performance with minimal pre-processing and a nominal
increase in model size.

1) Temporal Convolutional Networks: The paper uses a
temporal convolutional network (TCN) which processes time
series data Xt ∈ RF0 at each time step t, where F0 is the
feature dimension and 0 < t ≤ T . Layer l includes Tl time
steps, and the class labels are yt ∈ {1, ..., C} for C classes
[16].



The l-th layer applies 1D filters W(l) ∈ RFl×d×Fl−1 with
biases b(l) ∈ RFl . The activation Ê

(l)
t is computed as:

Ê
(l)
i,t = f

(
b
(l)
i +

d∑
t′=1

〈
W

(l)
i,t′ , E

(l−1)
.,t+d−t′

〉)
, (1)

where f(·) is the Rectified Linear Unit (ReLU) [12]. Each
TCN block consists of convolution, batch normalization, and
an activation function (ReLU or Parametric ReLU).

2) Recurrent Neural Networks: Recurrent Neural Networks
(RNNs) model temporal relationships by recurrently connect-
ing units across time steps [16]. The hidden state ht at step t
is updated as:

ht = tanh(Wht−1 + Ixt), (2)

where tanh is the activation function, W is the recurrent
weight matrix, and I is the input projection matrix.

The hidden state ht produces predictions using:

yt = softmax(Wht−1), (3)

where softmax normalizes outputs over C classes [9]. For
stacked RNNs, the hidden states at layer l are updated as:

hl
t = σ(Whl

t−1 + Ihl−1
t ), (4)

where σ is the logistic sigmoid function [15].
3) Long Short-Term Memory: LSTMs address the vanish-

ing gradient issue in RNNs using gating mechanisms [3]. At
time step t, an LSTM maintains a hidden state ht and memory
vector mt, computed as:

gu = σ(Wuht−1 + Iuxt), gf = σ(Wfht−1 + Ifxt),

go = σ(Woht−1 + Ioxt), gc = tanh(Wcht−1 + Icxt),

mt = gf ⊙mt−1 + gu ⊙ gc, ht = tanh(go ⊙mt),

where σ is the sigmoid function, ⊙ denotes element-wise
multiplication, and W, I represent the recurrent and input
weight matrices [3].

4) Attention Mechanism: The attention mechanism gener-
ates a context vector ci for a target sequence by selectively
focusing on key parts of the input sequence [11]. Given
encoder annotations hj , the context vector ci is:

ci =

Tx∑
j=1

αijhj , (6)

where the attention weight αij is:

αij =
exp(eij)∑Tx

k=1 exp(eik)
, (7)

and eij = a(si−1,hj) is the alignment score [11]. The
alignment model a, implemented as a feedforward network,
computes a soft alignment to ensure gradients propagate
effectively [9].

5) LSTM Fully Convolutional Network: Their architecture
consists of two main components: a Temporal Convolutional
Block (TCB) for feature extraction and an LSTM block for
capturing long-term temporal dependencies [1].

Their TCB is made up of three stacked 1D convolutional
layers with filter sizes of 128, 256, and 128. Each con-
volutional layer is followed by Batch Normalization [13]
(momentum = 0.99, epsilon = 0.001) and a ReLU activation
function. Residual connections are added to improve gradient
flow [8]. Global average pooling [10] is applied at the end of
the convolutional block to reduce the output dimensionality
and aggregate the extracted features.

Following the convolutional block, the model applies a
dimension shuffle to transpose the temporal and feature di-
mensions of the input [9]. This allows the LSTM block to
process the output of the TCB as a multivariate time series.
This LSTM block can consist of either a standard LSTM layer
or an Attention LSTM layer [11].

A rather high dropout layer [14] (rate = 0.8) is applied to the
LSTM output to mitigate overfitting as the model was trained
over 2000 epochs. The output of the LSTM block is then
flattened and concatenated with the global average pooling
output of the TCB. The concatenated output is passed through
a dense layer with a softmax activation function, producing the
final class probabilities [10]. This combination of temporal
convolutional features and LSTM-based temporal modeling
allows the LSTM-FCN architecture to efficiently capture local
and global dependencies within the time series data.

The overall architecture is illustrated in Fig. 1.

B. Key Results of the Original Paper

The LSTM-FCN model [1] achieved the highest classifica-
tion accuracy across 85 UCR datasets, outperforming baseline
models such as FCNs [8], pure LSTMs [3], Shapelets [5], and
Time Series Forests [6] shown in Fig. 2. The FCN branch,
with multiple convolutional layers and varying kernel sizes,
captured temporal patterns for class discrimination [7], while
the LSTM branch captured long-term dependencies critical
for classification [3]. The attention layer in the LSTM branch
improved focus on relevant time steps, increasing interpretabil-
ity and performance [11]. Global average pooling in the
FCN branch reduced parameters, keeping efficient training
and inference [10]. Ablation studies confirmed significant
contributions from both the FCN and LSTM components [1].
The average arithmetic rank in Fig. 2 indicates the superiority
of the original paper’s proposed models over the existing
state-of-the-art models [4]. Fine-tuning improved accuracy but
required additional training time [13].

III. IMPLEMENTATION - REPLICATION OF PAPER
METHODS

A. Objectives and Technical Challenges

The primary objective of this project is to replicate the
architecture and results presented in the original paper for
the LSTM Fully Convolutional Network (LSTM-FCN) and
its Attention LSTM (ALSTM-FCN) variant [1]. We aim to



Fig. 1. The original paper LSTM-FCN architecture. LSTM cells can be replaced by Attention LSTM cells to construct the ALSTM-FCN architecture [1].

Fig. 2. Original paper’s critical difference diagram of the arithmetic means
of the ranks [1].

implement the LSTM-FCN model architecture as described in
the paper, reproduce the reported classification accuracies on
benchmark time series datasets [2], and validate the model’s
ability to use temporal convolution and attention mechanisms
for improved performance [8].

The paper provided high-level details of the model architec-
ture but lacked explicit specifications for data pre-processing
steps and training configurations. Any assumptions that we had
to make for these steps may have contributed to performance
discrepancies [7]. Although we normalized the data sets fol-
lowing standard practices [10], subtle differences in scaling,
encoding, or handling missing values could have affected the
model’s convergence and accuracy [13].

B. Data

For our experiments, we used the same dataset as the
original paper: the 85 time series datasets from the University

of California, Riverside (UCR) Time Series Classification
Archive [2]. The UCR archive is a comprehensive and widely
recognized repository that has a large range of datasets, includ-
ing healthcare [5], finance [6], environmental monitoring [7],
and more. This diversity ensures that our model is evaluated
across different types of time series patterns and complexities,
showing its generalizability and robustness [4]. By using the
UCR archive, we ensure that our results are comparable to the
original paper and also relevant within the broader research
community [2].

C. LSTM.py

Our implementation of the LSTM Cell is designed to give
flexibility and control over the LSTM’s internal mechanisms
compared to standard library implementations [3].

a) Custom LSTM Cell: Our ‘LSTMCell‘ class defines
a custom LSTM cell by extending the ‘tf.keras.Model‘ class
[12]. It manages the hidden state ht and the cell state ct at
each timestep [3]. The cell explicitly calculates and updates
the input, forget, cell, and output gates, which regulate the flow
of information and enable our LSTM cell to capture long-term
dependencies in sequential data [14].

b) Initialization and Building: We set up the necessary
parameters for the number of units and initializers for the
kernel, recurrent kernel, and bias [12]. Our ‘build‘ method
dynamically constructs the weight matrices based on the input
shape:

W ∈ RF×4U , U ∈ RU×4U , b ∈ R4U ,

where F is the input feature dimension and U is the number
of LSTM units [3].



Fig. 3. Original paper’s performance comparison between proposed models
and the rest [1].

c) Forward Pass: Given the input xt and the previous
states ht−1 and ct−1, it computes the following:

z = xtW + ht−1U+ b, (19)
i, f ,g,o = split(z), i = σ(i), f = σ(f), g = tanh(g), o = σ(o),

(20)
ct = f ⊙ ct−1 + i⊙ g, (21)
ht = o⊙ tanh(ct), (22)

where σ(·) denotes the sigmoid activation function and ⊙
represents element-wise multiplication [3]. These equations
govern the gating mechanisms that control information flow
within the LSTM cell.

d) LSTM Model: We added a custom ‘LSTMCell‘ within
a functional model for time-series prediction. It uses the
‘tf.keras.layers.RNN‘ layer to process input sequences and
generates outputs through a Dense layer with a specified
activation function [10].

y = Dense(hT ), (23)

where hT is the final hidden state from the LSTM, and Dense
is a fully connected layer that projects the LSTM outputs
into the desired number of output classes using our specified
activation function [10].

D. attention lstm.py

In our ‘attention lstm.py‘, we combine multi-head attention
with an LSTM layer [11]. This allows the model to identify
and focus on important features within the input sequence,
helping both performance and interpretability [9].

a) Attention LSTM Architecture: The ‘AttentionLSTM‘
class extends the ‘tf.keras.layers.Layer‘ [12] and uses multi-
head attention mechanisms to change the traditional LSTM’s
[11]. The key components are the query, key, and value
projections, scaled dot-product attention, and the combination
of attention heads [9].

b) Initialization: The ‘AttentionLSTM‘ is initialized with
a specified number of LSTM units and attention heads [11].
The dimensionality of each head is determined by:

head dim =
lstm units
num heads

.

Trainable dense layers project the input into query, key, and
value vectors:

Q = XWQ, K = XWK , V = XWV ,

where WQ,WK ,WV ∈ RF×U are the weight matrices for
queries, keys, and values, respectively [11].

c) Forward Pass: Our forward pass method performs
these operations:

1) Linear Transformations: The input tensor X ∈
RB×T×F is projected into queries, keys, and values:

Q = XWQ, K = XWK , V = XWV . (24)



2) Splitting Heads: The projected tensors are reshaped and
transposed to be able use multiple attention heads:

Qheads = reshape(Q, (B, T,H, dk))

→ transpose(Qheads, (B,H, T, dk)), (25)

where H is the number of heads and dk is the dimen-
sionality per head [9].

3) Scaled Dot-Product Attention: For each head, attention
scores are computed and scaled:

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V, (26)

ensuring stability through the scaling factor
√
dk [9].

4) Concatenation and Transformation: Outputs from all
attention heads are concatenated and passed through a
final dense layer to merge the heads:

A = concat(head1,head2, . . . ,headH)WO, (27)

where WO ∈ RH·dk×U is the output projection matrix
[9].

5) Context Vector: The multi-head attention output is
averaged across the time dimension to produce a context
vector:

cattn =
1

T

T∑
t=1

At, (28)

which gives us the most important features of the input
sequence [11].

d) Integration with LSTM: The context vector cattn is
integrated with the LSTM’s hidden states to help our model
focus on important regions of the input sequence [11]. This
allows the model to prioritize informative features, improving
classification accuracy and interpretability [9].

E. temporal conv.py

The Temporal Convolutional Block (TCB) extracts features
from input time series data using 1D convolutional layers [8].
Each layer applies a series of filters across the temporal dimen-
sion, capturing local dependencies [7]. Batch Normalization
[13] and ReLU activation [12] follow each convolution to
stabilize training and introduce non-linearity [14]. The TCB
processes an input tensor X ∈ RB×T×F , where B is the batch
size, T is the number of time steps, and F is the number
of features [2]. The block consists of three Conv1D layers
with filters [128, 256, 128], a kernel size of 8, and a stride of
1. Residual connections [8] are optionally applied to mitigate
the vanishing gradient problem and accelerate training [1]. The
output of each Conv1D layer is computed as:

X(l) = ReLU
(
BN

(
Conv1D

(
X(l−1),W(l)

)))
, (8)

where W(l) are the convolutional filters for the l-th layer,
BN denotes Batch Normalization with momentum 0.99 and
epsilon 0.001, and ReLU is the activation function [12]. When
the residual connections are enabled, the input X(l−1) is added

to the output X(l), ensuring consistent dimensions. A 1x1
convolution adjusts mismatched dimensions:

Xres = Conv1D
(
X(l−1),Wres

)
, (9)

where Wres projects X(l−1) to the desired output shape [8].
The final TCB output aggregates features while preserving the
temporal structure, making it a suitable input for subsequent
LSTM or Attention LSTM layers [1]. This block improves
local feature extraction efficiency while maintaining a small
parameter footprint [7].

F. model.py

Our LSTM Fully Convolutional Network (LSTM-FCN)
model combines a Temporal Convolutional Block (TCB) with
an LSTM or Attention LSTM module to perform time series
classification [1]. The architecture uses temporal convolutions
for local feature extraction and LSTMs for capturing long-
term temporal dependencies. We also use global average
pooling [10] and dimension shuffling [9] to make sure there
is compatibility between each of the convolutional and LSTM
components.

The model takes as input a time series tensor X ∈ RB×T×F ,
where B is the batch size, T is the number of time steps, and
F is the feature dimension [2].

a) Temporal Convolutional Block (TCB): As described
earlier, the Temporal Convolutional Block extracts local fea-
tures using three stacked Conv1D layers with filter sizes of
[128, 256, 128] and a kernel size of 8. Each convolutional layer
is followed by Batch Normalization [13] and a Rectified Linear
Unit (ReLU) activation [12].

The output of the TCB is then passed through a Global
Average Pooling layer to aggregate the features across the
temporal dimension:

Xglobal = GAP(XTCB) , (10)

where GAP denotes Global Average Pooling [10].
b) Dimension Shuffle: To allow the LSTM block to

process the convolutional outputs as multivariate input, a
dimension shuffle operation transposes the tensor [9]. Given
input X ∈ RB×T×F , the transposed tensor Xshuffled is:

Xshuffled = Permute(2, 1) (X) , (11)

where Permute rearranges the tensor’s dimensions [9].
c) LSTM and Attention LSTM: The LSTM block as

stated previously process the transposed tensor Xshuffled to
capture long-term dependencies [3]. Two versions of the
LSTM block are implemented:

• Standard LSTM: A custom LSTM cell processes the
input sequence and outputs hidden states across all time
steps [3].

• Attention LSTM: The Attention LSTM adds multi-head
attention into the LSTM module to focus on key regions
of the input sequence [11]. Each attention head projects
the input into query, key, and value vectors, enhancing



the model’s ability to identify important features as
mentioned previously [9].

The LSTM output is passed through a dropout layer [14] with
a rate of 0.8 to mitigate overfitting:

H = Dropout(0.8) (HLSTM) . (12)

The LSTM output is flattened to prepare it for concatenation
with the global average pooling output [10].

d) Final Concatenation and Classification.: The global
average pooling output Xglobal and the flattened LSTM output
H are concatenated to form the final feature representation:

F = Concatenate (Xglobal,H) . (13)

A dense layer with softmax activation produces the final class
probabilities:

y = softmax (WF+ b) , (14)

where W and b are the dense layer weights and biases,
respectively [10].

IV. IMPLEMENTATION - NEW MODEL METHODS

A. Objectives and Technical Challenges

While our primary goal of the project was to replicate the
paper’s findings, we were curious to add new more modern
methods to improve prediction accuracy.

B. Data

We used the same dataset: the 85 time series datasets from
the University of California, Riverside (UCR) Time Series
Classification Archive [2].

C. SE block.py

The Squeeze-and-Excitation (SE) block is a channel-wise
attention mechanism that adaptively re-calibrates channel-wise
feature responses by explicitly modeling inter-dependencies
between channels. Introduced by Hu, Shen, and Sun [3], the
SE block helps the representational power of a network by
enabling it to perform dynamic channel-wise feature selection.
This improves the network’s ability to capture salient features.

The SE block can be mathematically represented as:

X′ = X⊙ σ (W2 · ReLU (W1 ·GAP(X))) , (15)

a) Architecture of the SE Block: The SE block comprises
two main operations: Squeeze and Excitation. These opera-
tions are implemented as follows:

1) Squeeze: The squeeze operation aggregates feature
maps across the temporal dimension to produce a chan-
nel descriptor. This is achieved using Global Average
Pooling (GAP), which computes the average of each
feature channel:

z = GAP(X) =
1

T

T∑
t=1

Xt, (16)

where X ∈ RB×T×F is the input tensor, B is the batch
size, T is the number of time steps, and F is the number
of feature channels.

2) Excitation: The excitation operation models the inter-
dependencies between channels and generates channel-
wise weights. This is implemented using two fully
connected (Dense) layers with a bottleneck (reduction
ratio) to reduce computational complexity:

u = ReLU(W1z+ b1), (17)

s = Sigmoid(W2u+ b2), (18)

where W1 ∈ RF
r ×F and W2 ∈ RF×F

r are the
weight matrices for the first and second Dense layers,
respectively, and r is the reduction ratio (set to 16).
The output s ∈ RF represents the channel-wise scaling
factors, showing the importance of each feature channel.

3) Scale: Our last step scales the original input tensor with
the generated channel-wise weights:

X′ = X⊙ s, (19)

where ⊙ is element-wise multiplication. This scaling op-
eration emphasizes informative channels while suppress-
ing less useful ones, thereby enhancing the network’s
discriminative ability.

b) Integration within the Model.: The SE block is inte-
grated after a convolutional layer within the network architec-
ture to help the feature representations before passing them to
subsequent layers. By embedding the SE block, our network
can emphasize more informative features and limit the less
relevant ones.

D. model.py

The SE blocks were added into the TCB to recalibrate
channel-wise feature responses. Residual connections were
also added within the TCB to help better gradient flow and
mitigate the vanishing gradient problem, expressed as:

Output = Conv(U) + U,

where Conv(U) represents the convolution operations ap-
plied to the input tensor U . This addition helps in training
deeper networks by providing shortcut paths for gradients.

We added Batch Normalization layers immediately after
each convolutional layer to stabilize and accelerate the training
process. The Batch Normalization operation is defined as:

BN(x) = γ
x− µ√
σ2 + ϵ

+ β,

where µ and σ2 are the mean and variance of the batch, γ
and β are learnable scaling and shifting parameters, and ϵ is
a small constant for numerical stability.

An additional intermediate Dense layer with 512 units and
ReLU activation was incorporated before the final output layer
to help the model’s learning capacity:

Denseintermediate = ReLU(W · x+ b),



Fig. 4. Model performance across datasets[1].

where W and b are the weight matrix and bias vector,
respectively. This layer increases the model’s ability to learn
complex representations prior to classification.

The model’s output construction was changed to include
intermediate processing steps before the final classification
layer. The sequence now follows concatenation of global
pooling and LSTM outputs, an intermediate Dense layer, Batch
Normalization, Dropout, and the Dense output layer.

V. TRAINING ALGORITHM DETAILS

The training procedure for the LSTM-FCN and ALSTM-
FCN models follows the methodology outlined in the original
paper [1]. We train and evaluate the models on the 85 UCR
Time Series Classification datasets [2]. Each dataset is loaded,
preprocessed, and used for both model replication and fine-
tuning experiments [4].

a) Data Pre-processing: The training and testing datasets
are loaded from the UCR archive [2]. Class labels are balanced
using a weighting scheme, where class weights are computed
as:

wc =
n

k · nc
, (20)

where n is the total number of samples, k is the number of
classes, and nc is the number of samples for class c [7]. These

Fig. 5. Class Imbalance - Dataset Lightning7

weights helped mitigate class imbalance during training as
shown in Fig. 5[13].

b) Model Training: We use the Adam optimizer [11]
with a sparse categorical cross-entropy loss function [10]. The
models are trained for 2000 epochs, as specified in the original
paper [1], with an initial batch size of 128 [10]. A validation
split of 20% is applied to monitor model performance during
training [13]. The training process consists of two phases:

1) Replication Phase: Both LSTM-FCN and ALSTM-
FCN models are trained without fine-tuning [1]. Results



are recorded for comparison [4].
2) Fine-Tuning Phase: The models are fine-tuned over

K = 5 iterations, following the learning rate and batch
size adjustments described in the paper [1]. The learning
rate is updated as:

ηi+1 = ηi ·
1

21/3
, (21)

and the batch size is halved at each iteration [11].
c) Implementation and Callbacks.: To ensure conver-

gence and improve generalization, we use callbacks during
training [14]:

• ReduceLROnPlateau: Reduces the learning rate by a
factor of 0.5 if the validation loss plateaus for 10 epochs,
with a minimum learning rate of 10−4 [11].

• EarlyStopping: Stops training if the validation loss does
not improve for 15 consecutive epochs, restoring the best
model weights [14].
d) Model Evaluation.: After training, the models are

evaluated on the test set. Predictions are made using:

ŷ = argmax(p), (22)

where p is the softmax probability output [10]. The accuracy
is computed as:

Accuracy =
Number of Correct Predictions

Total Number of Samples
. (18)

e) Training Pipeline: The complete training pipeline
consists of:

1) Loading each dataset and pre-processing inputs [2].
2) Training LSTM-FCN and ALSTM-FCN models with

and without fine-tuning [1].
3) Saving results, including accuracy scores and model

configurations, for further analysis [4].
The models are trained iteratively across all datasets, ensuring
consistency with the original paper’s methodology [1].

VI. RESULTS

A. Project Results

Model performance for both the LSTM-FCN model and
the ALSTM-FCN model is graphed in Fig. 4 for each dataset.
The performance for both our replication model and modified
model (labeled as ”project” in the figure) follow similar trends.
Out of the replication models and the modified models, the
replication models performed worse on average.

In Fig. 6, we can view the performance in detail by
observing the accuracies of our replication of the original
paper’s architecture and our modified model are showcased.

Both the replication models (for LSTM-FCN and ALSTM-
FCN) had unpredictable accuracies across the datasets, with
the LSTM-FCN alone scoring as low as 0.37 on the MidPhx-
AgeGp dataset and as high as 0.98 on the CBF dataset. Fine-
tuning interestingly rarely improved these replication models,
and the fine-tuned replication models often performed worse
than the replication models without fine-tuning.

The use of attention in the ALSTM-FCN model seemed
to be unpredictable in its ability to improve the LSTM-
FCN model. For example, it improved upon the LSTM-FCN
model’s accuracy on the ECGFiveDays dataset by 0.12 points,
but worsened the accuracy of the LSTM-FCN model on the
CinC ECG dataset by 0.39 points.

Our modified models (labeled as ”New Model” in the figure)
showed large improvements across all datasets. The results of
fine-tuning were still unpredictable, though we do see some
large jumps in improvement with the addition of fine-tuning
with the new model, one of them being a 0.40 point increase
on the MidPhxAgeGp dataset.

The modified models may be performing better because of
a combination of different settings we implemented. The SE
attention mechanism improved the model’s ability to focus
on important feature channels. Lowering the dropout rate
balanced regularization and information retention. The inter-
mediate dense layer increased the model’s capacity to learn
complex features. Batch normalization stabilized training and
accelerated convergence. Residual connections enhanced gra-
dient flow and allowed for deeper network training. Dropout
in LSTM cells reduced overfitting by preventing neuron co-
adaptation. With all these changes that were implemented, the
modified LSTM-FCN and ALSTM-FCN models were able to
learn better across the datasets.

B. Comparison of the Results Between the Original Paper and
the Our Project

The replication models aimed to reproduce the performance
of the original LSTM-FCN and ALSTM-FCN architectures as
described in the paper. However, the results showed notice-
able differences, with the replication models generally under-
performing compared to the paper’s reported scores.

In Fig. 4, we can compare our replication models and
modified models with the original paper’s models. The original
paper’s models for LSTM and ALSTM performed the best on
average. Although our replicant models performed the worst
on average, our modified models performed on par with the
original paper’s models on some datasets.

Accuracies between the results of our replication of the
original paper’s architecture, our improved model, and the
original paper are compared in Fig. 6.

As noted in Fig. 4, our replication models performed the
worst on average compared to the modified models and the
original paper’s models. The interesting part of the compar-
isons between these three main categories is the impact of
fine-tuning. Fine-tuning generally improved the accuracies of
the original paper’s models. However, as mentioned in the
previous subsection, fine-tuning generally worsened the accu-
racies of the replication models, while it generally increased
the accuracies of our modified models. The original paper’s
models may be performing better both with and without
fine-tuning because of pre-processing and different ways of
addressing class imbalance.

Our modified model showed significant improvements
across all datasets. Although it rarely achieved the same level



Fig. 6. Accuracy comparison between our replication, our improved model,
and the original paper, F-t indicating fine-tuning[1].

of accuracy of the results in the original paper, it bridged much
of the gap between the results of our replication model and
the original paper’s model.

C. Discussion of Insights Gained

Throughout the replication and enhancement of the LSTM-
FCN and ALSTM-FCN architectures, our team learned several
insights that helped our understanding of time series classifi-
cation.

We learned that results can be significantly influenced data
pre-processing and hyperparameter tuning. We still believe that
simpler models demonstrated competitive performance and
have more real world application; but we do see our more
complex models have better performance.

We also learned that integrating Squeeze-and-Excitation
(SE) blocks proved helpful in capturing inter-feature depen-
dencies within multivariate time series data. The SE mecha-
nism dynamically re-calibrates channel-wise feature responses,
enhancing the model’s focus on the most informative aspects
of the input. By adjusting feature weights dynamically, SE

blocks contributed to more robust and discriminative fea-
ture extraction, particularly in complex and high-dimensional
datasets. This adaptability helped mitigate overfitting and
enhanced generalization across diverse time series domains.

VII. FUTURE WORK

We think that integrating transformer-based layers [17] may
improve the model’s ability to capture long-range depen-
dencies without the sequential limitations of RNNs. Apply-
ing transfer learning [19] and self-supervised learning [18]
techniques could enhance feature representations and reduce
training time, especially in domains with limited labeled data.
Looking at advanced attention mechanisms [20] might refine
the model’s focus on relevant temporal segments, potentially
increasing classification accuracy.

Addressing scalability and computational efficiency is also
important. Implementing model compression techniques [21]
such as pruning and quantization can make the models suitable
for deployment in resource-constrained environments. Com-
bining Graph Neural Networks [22] with LSTM-FCN could
allow the model to better capture inter-feature relationships
in multivariate time series data. Additionally, employing data
augmentation and synthetic data generation methods [23] can
improve the model’s generalization by increasing the diversity
of training samples.

Improving model interpretability through explainability
frameworks [23] will make the models more transparent
and trustworthy, particularly in sensitive applications like
healthcare. Finally, evaluating the models on a wider range
of real-world datasets will demonstrate their robustness and
applicability across different domains. These directions can
help enhance the performance, efficiency, and usability of
LSTM-FCN models for time series classification.

VIII. CONCLUSION

We replicated the LSTM-FCN and ALSTM-FCN architec-
tures for univariate time series classification based on Karim
et al. [1]. We noticed that we were not able to obtain similar
results with the same methods that were explicitly stated in
the report. We created a new similar model where we in-
troduced a Squeeze-and-Excitation (SE) attention mechanism,
reduced the dropout rate, added an intermediate dense layer,
applied batch normalization throughout, implemented residual
connections, and added dropout within LSTM cells. These
changes addressed overfitting, improved feature emphasis, and
stabilized training.

Our modified models achieved higher classification accu-
racies compared to both the replication models across the
UCR datasets, and they also were able to achieve the same
performance as the original paper’s models on some datasets.
The SE attention mechanism and residual connections in the
modified models contributed to performance improvements.
Future work includes hyperparameter optimization, integrat-
ing transformer-based layers, exploring advanced attention
mechanisms, applying transfer learning, improving scalability,
enhancing interpretability, evaluating on more datasets, and



combining LSTM-FCN with Transformers or Graph Neural
Networks.

REFERENCES

[1] Karim F, Majumdar S, Darabi H, Chen S. LSTM fully convolutional
networks for time series classification. IEEE Access. 2017 Dec 4;6:1662-
9.

[2] Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen AM, Batista G.
The UCR Time Series Classification Archive. 2015.

[3] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput.
1997;9(8):1735–1780.

[4] Bagnall A, Lines J, Keogh E. A comprehensive evaluation of rep-
resentations for time series classification. Data Min Knowl Discov.
2017;31(3):606–660.

[5] Read N, Schmidt M, Keogh E. Learning Shapelets for Time Series
Classification. ICDM. 2011;4:417-424.

[6] Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
[7] Zhao R, Zhang S, Wang Y, Zhao G. Feature extraction techniques for

time series classification: A survey. Inf Fusion. 2020;57:1–13.
[8] Wang Y, Zheng Y, Malinowski M, Yuan Y, Wang Y. Time series clas-

sification using fully convolutional networks. ICML. 2017;70:849–858.
[9] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez

AN, Kaiser Ł, Polosukhin I. Attention is All You Need. NIPS.
2017;30:5998–6008.

[10] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R.
Dropout: A simple way to prevent neural networks from overfitting. J
Mach Learn Res. 2014;15(1):1929-1958.

[11] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly
learning to align and translate. ICLR. 2015.

[12] Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M,
Ghemawat S, Irving G, Isard M, et al. TensorFlow: Large-scale machine
learning on heterogeneous systems. 2015.

[13] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. ICML. 2015;37:448–456.

[14] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R.
Dropout: A simple way to prevent neural networks from overfitting. J
Mach Learn Res. 2014;15:1929–1958.

[15] Elman JL. Finding structure in time. Cognitive Science.
1990;14(2):179–211.

[16] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature.
2015;521(7553):436–444.

[17] He K, Zhang X, Ren S, Sun J. Momentum Contrast for Unsupervised
Visual Representation Learning. CVPR. 2020.

[18] Pan S J, Yang Q. A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering. 2010;22(10):1345-1359.

[19] Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y,
Li W, Liu P J. Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer. JMLR. 2020;21(140):1-67.

[20] Frankle J, Carbin M. The Lottery Ticket Hypothesis: Finding Sparse,
Trainable Neural Networks. ICLR. 2019.

[21] Wu Z, Pan S, Chen F, Long G, Zhang C, Philip S Y. A Comprehen-
sive Survey on Graph Neural Networks. IEEE Transactions on Neural
Networks and Learning Systems. 2020.

[22] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair
S, Courville A, Bengio Y. Generative Adversarial Nets. NIPS. 2014.

[23] Lundberg SM, Lee S I. A Unified Approach to Interpreting Model
Predictions. NeurIPS. 2017.


	Introduction
	Summary of the Original Paper
	Methodology
	Temporal Convolutional Networks
	Recurrent Neural Networks
	Long Short-Term Memory
	Attention Mechanism
	LSTM Fully Convolutional Network

	Key Results of the Original Paper

	Implementation - Replication of Paper Methods
	Objectives and Technical Challenges
	Data
	LSTM.py
	attention_lstm.py
	temporal_conv.py
	model.py

	Implementation - New Model Methods
	Objectives and Technical Challenges
	Data
	SE_block.py
	model.py

	Training Algorithm Details
	Results
	Project Results
	Comparison of the Results Between the Original Paper and the Our Project
	Discussion of Insights Gained

	Future Work
	Conclusion
	References

